Cholinergic brainstem neurons modulate cortical gamma activity during slow oscillations.
نویسندگان
چکیده
Cholinergic neurons in the rostral brainstem, including the pedunculopontine nucleus (PPN), are critical for switching behavioural state from sleep to wakefulness, and their presumed inactivity during sleep is thought to promote slow cortical rhythms that are characteristic of this state. However, it is possible that the diminished activity of cholinergic brainstem neurons during slow-wave sleep continues to have a functional impact upon ongoing cortical activity. Here we show that identified cholinergic projection neurons in the PPN fire rhythmically during cortical slow oscillations, and predominantly discharge in time with the phase of the slow oscillations supporting nested gamma oscillations (30-60 Hz). In contrast, PPN non-cholinergic neurons that are linked to cortical activity fire in the opposite phase and independent of nested gamma oscillations. Furthermore, cholinergic PPN neurons emit extensive local axon collaterals (as well as long-range projections), and increasing cholinergic tone within the PPN enhances the nested gamma oscillations without producing sustained cortical activation. Thus, in addition to driving global state transitions in the cortex, cholinergic PPN neurons also play an active role in organizing cortical activity during slow-wave sleep. Our results suggest that the role of the PPN in sleep homeostasis is more diverse than previously conceived. The functions supported by nested gamma oscillations during sleep (i.e. consolidation, plasticity) are critically dependent on the gating of the underlying cortical ensembles, and our data show that cholinergic PPN neurons have an hitherto unappreciated influence on this gating process.
منابع مشابه
Cholinergic basal forebrain neurons burst with theta during waking and paradoxical sleep.
It is known that acetylcholine can stimulate activation and promote plasticity in the cerebral cortex, yet it is not known how the cholinergic basal forebrain neurons, which release acetylcholine in the cortex, discharge in relation to natural cortical activity and sleep-wake states. By recording basal forebrain units in association with electroencephalographic activity across the sleep-wake cy...
متن کاملDynamic Interaction of Spindles and Gamma Activity during Cortical Slow Oscillations and Its Modulation by Subcortical Afferents
Slow oscillations are a hallmark of slow wave sleep. They provide a temporal framework for a variety of phasic events to occur and interact during sleep, including the expression of high-frequency oscillations and the discharge of neurons across the entire brain. Evidence shows that the emergence of distinct high-frequency oscillations during slow oscillations facilitates the communication amon...
متن کاملRhythmically discharging basal forebrain units comprise cholinergic, GABAergic, and putative glutamatergic cells.
The basal forebrain plays important roles in arousal, learning, and memory by stimulating cortical activation characterized by rhythmic slow theta and high-frequency beta-gamma activities. Although cholinergic neurons play a significant part in these roles, other, including GABAergic, neurons appear to contribute. Using juxtacellular labeling with neurobiotin of neurons recorded within the magn...
متن کاملTemporal Structure of Neuronal Activity among Cortical Neuron Subtypes during Slow Oscillations in Anesthetized Rats.
UNLABELLED Slow-wave oscillations, the predominant brain rhythm during sleep, are composed of Up/Down cycles. Depolarizing Up-states involve activity in layer 5 (L5) of the neocortex, but it is unknown how diverse subtypes of neurons within L5 participate in generating and maintaining Up-states. Here we compare the in vivo firing patterns of corticopontine (CPn) pyramidal cells, crossed-cortico...
متن کاملNeurotensin-induced bursting of cholinergic basal forebrain neurons promotes gamma and theta cortical activity together with waking and paradoxical sleep.
Cholinergic basal forebrain neurons have long been thought to play an important role in cortical activation and behavioral state, yet the precise way in which they influence these processes has yet to be fully understood. Here, we have examined the effects on the electroencephalogram (EEG) and sleep-wake state of basal forebrain administration of neurotensin (NT), a neuropeptide that has been s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of physiology
دوره 586 12 شماره
صفحات -
تاریخ انتشار 2008